Digital Design

(a) Consider the following combinational circuit implementing the parity check on 8 inputs x1,..., x8

- What is the total number of tests to detect stuck-at-1 logic fault on input line x 1 ?
- What is the total number of tests to detect stuck-at-1 logic fault on input line x 8 ?
- Consider the following 'complex' fault model: single stuck-at-1 fault can occur either on line x 1 or on line x 8 . What is the total number of tests to detect this 'complex' logic fault?
- Consider the following 'complex' fault model: single stuck-at-1 fault can occur on both lines x 1 and x 8 . What is the total number of tests to detect this 'complex' logic fault ?

SOLUTION

(i) input x 1 should be set to $\mathrm{x} 1=0$ and all other inputs can assume $2 * * 7$ different values \rightarrow total number of tests is $2 * * 7$
(ii) input x 8 should be set to $\mathrm{x} 8=0$ and all other inputs can assume $2 * * 7$ different values \rightarrow total number of tests is $2 * * 7$
(iii) inputs x 1 and x 8 should be set to $\mathrm{x} 1 \mathrm{x} 8=00$ and all other inputs can assume $2 * * 6$ different values \rightarrow total number of tests is $2 * * 6$
(iv) there are no tests to detect this fault.

Grading: 0.5 pts for each part (i) - (iv)
(b) Consider the ripple counter shown below. Assume that all flip-flops are positive edgetriggered. Show the transition diagram for this counter, and clearly show the transition states. Determine the counting sequence for this ripple counter assuming the initial state 000 . Is this counter self-starting?
Note: the counter is self-starting if the states in the counting sequence can be reached from any other state in the transition diagram.

SOLUTION

Operation table:

- A is toggled when CP goes positive and $\mathrm{C}=0$.
- B is toggled when A goes from 1 to 0 .
- C is clocked when CP goes positive;
it is set when $A B C=11-$, cleared when $A B C=-0-$, and unchanged when $A B C=01-$.

The complete transition diagram is shown below:

Assuming the initial state 000 , the counting sequence (of stable states) is:
$000 \rightarrow 100 \rightarrow 010 \rightarrow 110 \rightarrow 001 \rightarrow$ back to 000
Transition states are indicated in red color:
$000 \rightarrow 100 \rightarrow 000 \rightarrow 010 \rightarrow 110 \rightarrow 011 \rightarrow 001 \rightarrow$ back to 000
The counter is NOT self-starting.
Grading: 2 pts total.
Points Breakdown:

- Transition diagram + operation table ~ 1.5 pts
- counting sequence $\sim 0.25 \mathrm{pts}$
- self-starting question ~ 0.25 pts

